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Abstract—High-quality location based services rely on com-
plete and accurate information of road segments. However, the
attributes of road segments in online maps are often incomplete.
For example, to compute fastest routes, a navigation system
requires information, such as speed limits and road categories,
of all road segments. While in OpenStreeMap, such attributes
are often missing for many road segments. To contend with
incomplete attributes, we propose a system that is able to utilize
different machine learning techniques, including both non-deep
learning and deep learning algorithms, to fill in the missing
attributes. The system is developed and integrated into aSTEP,
a spatio-temporal data analytic platform developed by Aalborg
University, and is tested using data collected from four major
Danish cities.

I. INTRODUCTION

Recent transportation innovations, e.g., transportation-as-
a-service and autonomous driving, call for high-resolution
routing, such as stochastic routing [1]-[3], personalized rout-
ing [4]-[6], and eco-routing [7]. A prerequisite of any kind of
routing is that all road segments are associated with relevant
attributes, such as speed limits, road categories, travel time,
and fuel consumption, etc. However, it is often the case that
only some, but not all, road segments, are associated with such
attributes. We call this the data sparseness challenge. For ex-
ample, in OpenStreetMap, a significant portion of the Danish
road segments are missing speed limits and road categories.
Travel time and fuel consumption are often derived from GPS
data, but GPS data is often skewed, which cannot cover all
road segments, even when using large GPS data sets [8]. Thus,
the travel time and fuel consumption information is also often
incomplete. The data sparseness challenge adversely affects
routing quality.

We demonstrate a system that contends with the data
sparseness challenge—it provides practical solutions to fill
in missing road segment attributes such that a road network
with complete road segment attributes can be offered to
various routing algorithms. Specifically, the system models
the problem as a classification problem. The road segments
with relevant attributes are employed as training data. The
available attribute of a training road segment is employed
as its label, indicating, e.g., the road category or the speed
limit of the road segment. The system offers a wide variety
of machine learning algorithms to solve the classification
problem, including deep learning vs non-deep learning and
inductive vs transductive learning. Finally, the system is able
to return estimated attributes for the road segments that are
originally without attributes.

We test the system on the four largest cities in Denmark:
Copenhagen, Aarhus, Odense, and Aalborg. The system fills in
eight types of attributes, e.g., speed limit and road categories,
using relevant information collected from OpenStreetMap. The
system is developed based on aSTEP, a spatio-temporal data
analytics platform developed at Aalborg University [9].

II. SYSTEM OVERVIEW

Figure 1 gives a system overview. The input is the Open-
StreetMap data from a city or a rectangular region.
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Fig. 1. System Overview

The input data is pre-processed through a Segment Feature
Generator, a Segment Attribute Generator, and a Graph Gener-
ator. The Segment Feature Generator extracts relevant features
of each segment, e.g., length, number of lanes, coordinates
of the endpoints, whether it is connected with roundabouts
or junctions. The output is a feature matrix F € R"*™,
where n is the number of road segments and m is the number
of features. Segment Attribute Generator associates attributes,
e.g., speed limits or road categories, with the edges which
have relevant information. The output is an attribute matrix
A € R" % where n’ < n is the number of road segments
that are already associated with relevant attributes, which are
used as training data; and x is the number of attributes. The
Graph Generator returns a graph G that models the topology
of the road segments in the underlying road network.

The Attribute Estimation module uses two algorithms to
estimate road attributes. First, the k-nearest-neighbor algo-
rithm, a non-deep learning and inductive learning algorithm,
builds a classifier using F and A to estimate the missing road
attributes. Second, the graph convolution neural network [10],
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Fig. 2. Demonstration Outline

[11], a deep-learning and transductive learning algorithm,
estimates the missing road attributes using features in F,
available road attributes in A, and the road segment topology
captured by graph G, which facilitates to propagate attributes
to the segments without attributes. As future work, ensemble
learning [12] and distributed computing [13] may be used to
improve accuracy and efficiency, respectively.

Finally, we provide a map based UI with two modes, a
user mode and a developer mode. In the user mode, a user
is able to see the original road attributes vs. the estimated
road attributes along with the accuracy of the estimations. The
developer mode provides means to change different parameter
settings of the learning algorithms which facilitate developers
to fine tune the algorithms to achieve the best accuracy.

III. DEMONSTRATION OUTLINE

We proceed to describe how users may interact with the sys-
tem, which is integrated into aSTEP (https://astep.cs.aau.dk), a
spatio-temporal data analytics platform developed by Aalborg
University [9]. To try the segment attribute completion system,
click “Path Analytics” and then “Attribute Completion™ (Label
1 in Fig. 2). Users may switch between the user vs. the
developer modes by using the toggle button (Label 2). Fig. 2
shows the developer mode. Label 3 allows users to select
various settings in the developer mode—selecting a specific
learning algorithm, a specific region defined by the coordinates
of the region corners, hyper-parameters, training-testing split,
and the target attribute to be estimated, e.g., speed limits. After
filling in all relevant information, clicking the “Generate”
button enables the system to estimate the missing attributes.

The system provides multiple views to show the estimated
results (Label 4). The “Estimations (Map)” view allows users
to see the results on a map where different roads are associated
with different colors based on their estimated attributes. Click-

ing the “Legend” button shows an explanation of different
colors. By clicking the “Estimations and Accuracy (Text)”
button, the estimated attributes are shown in text. In addition,
the average accuracy of the system is also shown.
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